
Image Based Upgrades with Debian

Marc Leeman

August 9, 2023

Abstract

Debian is a flexible and powerful Linux based operating system. It
has a large repository of readily available and well maintained software
on one hand and it has a wide range of supported architectures to run
on the other hand. As a result, the operating system is used on many
development systems and servers and is known for its long running support
and stability.

One of the central components of this success is the software deploy-
ment and upgrade tool: apt-get and dpkg.

These tools use pre-compiled software (in deb packages) to upgrade
the different systems in a modular way from multiple storage locations
and network resources. This results in systems that are up to date with
the latest released software and security fixes; but it can also lead to sys-
tems that diverge from one another since their final software configuration
depends on the time the upgrade has been performed. For device soft-
ware, this is not desirable and re-initalising the devices with an re-install
to restore the baseline is not practical, time and resource intensive.

The rest of the document will describe how Debian can be used to
counter this apparent contradiction by using image based upgrades, while
keeping the strengths of incremental and modular upgrades when needed.

1

Contents

1 Introduction 3

2 Related Work 3

3 Debian Based Setup 5
3.1 Controller Environment . 5
3.2 Debian as Operating System . 6
3.3 Image Based Upgrades . 8

3.3.1 Installer . 8
3.3.2 Upgrade Artifact . 10
3.3.3 A/B deb Delivery . 10
3.3.4 What about Read/Write Access? 11

3.4 Package Upgrades on Running Images 13
3.4.1 Non-Persistent Package Install and Upgrade 13
3.4.2 Persistent Package installs and Upgrades 14

4 Summary 15

2

1 Introduction

One of the many strengths of Debian is the availability of wide range of well
tested libraries and software and support for CPU architectures. The latest
Debian release supports over 64,000 of these packages and supports no less than
9 different CPU architectures [4].

The use of Debian for other than trivial software stacks cuts down devel-
opment cost and lets the team focus on the added value instead of integrating
software in yet another embedded and highly customised build environment for
a proof of concept (PoC) and production software.

For both PoC and development, the ability to select and pick prepared soft-
ware components is paramount to avoid time consuming cycles of compilation
and integration. Also, the availability to run software on the development sta-
tions instead of on the (often slower) target devices is also an important win.

The final goal of the development cycle must be a well defined software
stack that is deployed on a large number of devices. These devices themselves
are not identical and have some variety in their hardware configurations, both
peripherals can change as the instruction set architecture of the processor itself.
As a whole, the afore mentioned software should abstract these changes and
operate, within limits, the same. In turn, this contradicts the flexibility of the
development.

In the following, a method to reconciles these two ends of the deployment
flexibility will be explained.

2 Related Work

One of the identifying features of Linux systems is that they are very flexible
to use. The fact that most of the software is open source has lead to a large
number of variants that range from a general purpose design to an OS that
is tweaked towards a very dedicated device; from commercial to free systems.
Listing all these variants would be near to impossible. As a result, a selection
of relevant examples is used.

One of the most open source and device minded solutions that has a very
dedicated following is BuildRoot [10].

BuildRoot is highly configurable and is centered around a set of Makefiles
that pull in software from a network location and compiles the full system from
a predefined configuration, kernel, core libraries and software. The result is a set
of images that are minimal and can be written to the device. Since BuildRoot
is focussed for embedded devices, these images are typically small and all non-
essentials are removed: documentation and licence files are missing from these
images. Being make based, it does try to re-use compilation as long as the
workspace is kept. The downside is that the images are (in general) pretty
fixed and limited after the configuration has been determined. While it does
offer the fixed configuration images, it lacks the flexibility for easy run-time
adjustment and cycle time between development and deployment should not

3

be underestimated. It does have a wide range of of integrated software that
can be used (depending on the particular configuration used) with more or less
features, but the support is no where near what one would expect from a major
distribution. Furthermore, the integration of upstream software releases are
often delayed. The nature of BuildRoot also puts a strong boundary between
the target and the development environment.

Another significant player for Linux device software is The Yocto Project
[13]. Where BuildRoot grew from open source initiatives that offered an al-
ternative for MontaVista [14], the Yocto Project was launched by the Linux
Foundation [5] in cooperation with important industry players. Yocto is known
to build images for different architectures and it supports packages to configure
an already installed system as well. However, it does have strong support for
System on Chip (SoC) and is often the system of choice when contacting the
SoC vendor. Experience shows that, depending on the subsystem, it has a lower
delay when integrating new upstream releases. Most of the use-cases seem to
be centered on a make → build → deploy cycle of the images, not unlike the
one described for BuildRoot.

Both of these allow for some kind of network based image upgrade while
incremental changes can be slow. They also have a strong boundary between
the development environment and the target. This does not always benefit the
quality of the software since many engineers have the tendency to write for
the device itself and break functionality when any change is presented to the
environment.

On the other side of the spectrum are the general purpose Linux OSes, like
RedHat [15], SuSE [16], . . . and Debian [3] with its derivatives (e.g. Ubuntu [2]).
The design of these systems is centered around installing it once and maintaining
it by upgrading it incrementally: every piece of software can be upgraded at
any time and the dependencies between the software packages themselves are
minimal. These general purpose Linux OSes are traditionally designed and
tweaked for server and desktop use.

By their nature, these distributions have access to a very broad range of soft-
ware (open source as well as closed), have a focus on long term maintenance and
support and can run on different architectures. Most software is pre-compiled
and is easy to install on a running system, the learning curve is kept as low as
possible. However, in order to re-baseline the system, it is often expected that
the device is re-installed. The controllers, where the software is running on,
are built in in vehicles and access to these is controllers is challenging at best
(hidden behind panels). This becomes even more of a problem if the vehicles
are moving around during operation.

One important difference with these general purpose distributions is that
they normally do not come with cross compilers but depend on native compila-
tion for packaging1. Some time ago, this meant that this needed to be compiled
on hardware with that instruction set. Luckily, these distributions have multi-
architecture support and running e.g. arm code on an x86 machine is all but

1Cross-compilers are available by default on Debian for most major architectures.

4

transparent.
There are many more variants, each with their strengths and weaknesses.

Giving an exhaustive summary for all is impossible and far outside of the scope
of this work.

3 Debian Based Setup

This section will explain how the ease of use of a general purpose operating sys-
tem as is Debian, is reconciled with the standardisation of the software running
on a series of controllers.

3.1 Controller Environment

The environment where the Debian OSes are used are in the public transporta-
tion market and the software is running in a range of x86 hardware (both 32 as
64 bit). The controller systems serve to control a range of embedded devices, is
used to stream audio/video on the network (and decode and render it), serves
as a network entry point to dedicated networks and collects information and
logging. The software can be configured in any of these configurations offering
a selection of the functionality. At the time of writing, there are well over 100
different configurations and software combinations that are actively maintained.
Finally, these controllers are used in a world-wide market.

A number of important requirements can be derived from the above descrip-
tion:

� There are multiple architectures on the controllers: the older devices are
32-bit, while the newer ones (to replace end-of-life devices) are 64-bit.
While the 64-bit systems can be run in 32-bit mode, a lot of the function-
ality requires running newer vectorized code (eg. AVX2, AVX512) which
is not available in older 32-bit CPUs (e.g. encoding and decoding) and
running everything in 32-bit mode leaves have of the computing power
unused is not cost efficient.

� New controllers are selected for additional performance. This contradicts
the possibility to run the systems in 32-bit mode for compatibility pur-
poses. As a result, the support for multiple architectures is mandatory.
Furthermore, the software should be available on all configurations; ab-
stracting the software as much from the underlying hardware as possible.

� Whenever possible, decoding and encoding must use the available hard-
ware acceleration blocks: networked video streams are at least 1080p, with
2160p gaining more traction as more advanced codecs are available on the
SoC of the network sources (e.g. cameras). Decoding these in software
does not only put a high strain on the memory and CPU, it will often lead
to higher latency which is not acceptable for monitoring purposes.

5

� in an x86 environment, End-of-Life (EoL) of components is often around
the corner and the easy replacement of these should not require invasive
changes in software.

� Matching the above, since the controllers are used in a world wide market,
some connectivity components can change between different markets. A
typical example is e.g. the 4G/5G connectivity modem between North
American and European markets.

� The software often requires customer specific changes and functionality.
To this end a standardised software stack that has access to readily avail-
able libraries and programs is a huge benefit. Software is written in a range
of technologies, including C/C++, Java, Python, Perl, . . . and libraries
that provide an interesting functionality are often offered or available in
some technology, the in-house software needs to interact with all of these.
This should not limit the ease of integration.

This list defines all the boundaries to use a general purpose operating system
like Debian, while the deployment would traditionally be reserved for more
embedded approaches.

3.2 Debian as Operating System

For a number of reasons, Debian was selected as the OS to use, reasons are
many and include the availability of software and development tools (which has
always been a strong point of Debian) and the long term stability and regular
release cycle.

For many use-cases, the availability of pre-compiled media decoding frame-
works, Python modules or Java libraries makes for very efficient development.
Also once the system is installed, there is little difference for the software to run
on the different architectures: when developed for 64-bit (e.g. on the worksta-
tion of the developer); code that is written properly will run on 32-bit systems
once it has passed the build infrastructure.

The software that ends up on the target systems can be divided in a number
of scenarios:

� Software that is being used is packaged upstream and is used on the system
in a supportive function or does not need any changes at all. In this case,
the package can be used as is and is pulled in from the latest Debian
stable via an aptly [9] maintained mirror. The mirror contains not only the
packages for the relevant architectures, it also contains the code snapshots
that were used to create those packages. By mirroring the source and the
binary packages, software that is being used in systems can always be
patched: the code that was needed to create the binaries is present.

� The software needed is in all intents and purposes the same as upstream
(and is packaged in Debian stable). Occasionally, extra functionality is

6

needed, a bug has been identified and solved or a dependency has changed.
In that case, the upstream approach is followed again:

– The upstream git packaging repository is identified (this is in most
cases different than the upstream source code git location) and a
patch is added in debian/patches/ or a another change is done in
the debian/ directory (quilt format in debian/source/format).

– The package is then built in a clean chroot that mimics the final target
(e.g. Debian 12) so that all dependencies are resolved cleanly and the
system is not polluted by the local installation of the developer or
even from the build infrastructure. There are a number of tools that
support this (e.g cowbuilder); but mini-buildd provides a more
general and complete solution [7]. Next to building for the target OS,
mini-buildd builds and provides consistent binaries for the different
CPU architectures the software needs to run on (see Figure 1).

� The software that is needed is newer than the target distribution that is
being used (e.g. GStreamer 1.22.4 in Debian 11). In this case, a very
similar approach as the previous is used and the code is back ported and
sent to mini-buildd. In Debian, this links to debian-backports. By
doing this, we can be certain that the code compiles into the target envi-
ronment (e.g C++20 features that are not supported), we can also assure
that the dependencies are correct during build; and as a result, the correct
run-time dependencies are generated.

� The software needed is available upstream, but has not been packaged yet.
In this case, the aim should be to use the Debian best-practices approach
and integrate the code into git with git-buildpackage and pristine-tar (gbp
import-orig --uscan --pristine-tar). By doing this, the work can be
contributed to Debian and/or picked up by someone that contributes it.
Even if none of this is the case, the gbp structure is a proven way to
maintain it for packaging and keep code in sync with upstream as they
release new snapshots.

� The software that needs to be deployed is own software. In that case,
the software is packaged as a native package, sent to the mini-buildd

instance and integrated into OS.

By following these steps, there is enough room to assure that unattended
upgrades can work fine and a package based upgrade is an option. The downside
of this is practical rather than technical: customers (be it end-users or e.g the
Q.A. department) are interested in the combination of the software that offers
the functionality and wants to pin a version and timeline on that. The piecemeal
upgrade of the system provides a granularity where developers of the relevant
projects are interested in, but does not offer the simplicity of the combination
of the software that offers an end-functionality.

7

Figure 1: Screenshot of mini-buildd web interface. The screenshot shows that
source snapshots are built and released for amd64 and i386 architectures, as
well as for Debian 11 as Debian 12 systems

3.3 Image Based Upgrades

In order to offer the simplicity of combined software upgraded on a device per
device basis, image based upgrades are a proven technique that is used any-
where from embedded controllers to phones, television sets and other end-user
electronics.

This section will explain the setup that is used to create an image based
upgrade while maintaining the possibility to do package based upgrades.

3.3.1 Installer

As the previous text already hints to, the goal of the overall system and Debian
based OS is to stick as close to Debian as possible. Not only does this minimise
development and integration efforts, it keeps the threshold for new users low:
the system behaves as a standard Debian system and all the files (configuration,
programs, libraries) are in the locations the user expects them to be.

This choice entails that the work-flow should mimic the accepted Debian
development flow as closely as possible: as with users, developers will find a
plethora of available documentation. Because of this, the system starts with
the default Debian installer [8] (debian-netinst). The advantage is that it is
well known and supports a broad variety of hardware as well as both legacy
BIOS boot and EFI boot. Especially the latter is important where hardware
is registered to the EFI system before it can be used as a boot device (every
device has a unique identifier, so moving images or disks across devices is not
as straight forward as it might seem).

To this end, a script was written to author the debian-netinst iso file (see
Figure 2). apt-get is used to download extra packages (with all dependencies)
and store them in the iso file. In combination with preseed recipes, the instal-
lation can be automated [11]. When this is done properly, the installation can

8

be all but headless or can just require interaction when an unexpected situation
occurs (missing hardware).

Figure 2: Screenshot of the customised Debian netinst installer. The default
Debian graphics have been changed, as has the colour of the progress bar. The
installer itself is still the one as provided by Debian.

For the image based upgrades, a symmetrical design is chosen: the system
provides a configuration for two systems, one of them active and the other is
not. Both of these systems are fully functional and contain the software that is
needed during operation. The choice for this was driven by simplicity and to
reduce downtime2.

An important part of the preseed file is the partitioning. Since image based
upgrades are used, a ping/pong approach is used: when system A is booted
(partition), the system B partition is written during the image upgrade and the
other way around. A number of approaches can be used: primary partitions are
often limited to 4; more flexibility is available with extended partitions but the
most flexibility is probably in using Logical Volume Management (LVM).

Per system (A/B) a boot and root partition is needed where the boot files
are stored (kernel, initrd) and the full system is stored respectively. In the case

2The alternate approach is that the system needs be brought down in a mode from which
it can be upgraded. This is often the boot loader (that has extra functionality) or a dedicated
Linux system. Systems that use this range from large servers (e.g. IBM), to routers or even
android devices. However, there is always more downtime involved, either by preparing the
system to go in upgrade mode and having it in the upgrade mode, or by applying the upgrade
during the next boot.

9

of EFI, an extra EFI VFAT partition is needed. The preseed partitioning will,
at least, foresee (EFI), boot a, root a, boot b and root b, after installation,
(EFI), boot a and root a will be in use while boot b and root b are empty3.

3.3.2 Upgrade Artifact

The previous installer contains a bootable system after which the debootstrap
[12] is used by the installer to prepare the initial system. Deboostrap can be
used to create the upgrade artifact itself, but in our case, we opted to combine
the test the installer with the installation of iso and use the resulting archive of
the partitions to create the upgrade artifact. For virtualisation, QEMU is used
and the resulting disk can be loop mounted or can be mounted with kpartx
(when the disk is in compressed qcow2 format).

The iso file is fed to a virtual machine that boots from a virtual USB drive.
Just as what happens during production step on the real hardware, the installer
takes over, detects the hardware and partitions the target media. Internally,
the installer uses debootstrap to install the packages that are defined in the
preseed file on this virtual boot disk. When the Virtual machine shuts down, the
resulting image file is processed and the boot a/root a partitions are archived.

The result of this procedure is a set of archives (boot and root). These are
enough to implement the A/B upgrade system by simple scripting:

� When A is booted, format boot b and root b

� Extract the boot archive on boot b and the root archive on root b

� Swap the boot by changing the boot configuration. Depending on what
is used as boot loader or boot manager, options are rewriting the grub
configuration file, using a simple EFI boot manager like rEFInd or using
a system that boots based on the labels of the filesystems and swapping
the ext4 labels after extracting the archives (e.g. extlinux).

The same reasoning is in place when the B system is booted.

3.3.3 A/B deb Delivery

As a final piece, the functionality to deliver the upgrade archives needs to be
determined.

When upgrading, the upgrade functionality is often embedded in the system
that needs to be upgrade. In reality, there can be months or years between
upgrades so the upgrade is in essence being activated by code that was written
years ago. When it is certain that the upgrade system will never change or will
never need bug fixes, this can be a valid approach. However, to our experience,
this is rarely the case and combining the upgrade methodology with the upgrade
artifacts provides room for much more retroactive changes.

3A production install will only fill the A system. After a first upgrade, both systems will
be occupied and swapping between the two is possible.

10

What is known, is that the system that is being upgraded is a debian system
and has dpkg as part of the standard tooling.

For this reason, the image archives are packed in a fat debian file, this al-
lows to bundle the upgrade functionality (scripts, applications) in the upgrade
artifact itself and these do not need to be part of the system that needs up-
grading. Bundling it this way provides much more functionality for fixing and
re-configuring the system long after it has been deployed in the field. The down-
side is that some caution is needed when standard tools that run on the target
are used.

The split of upgrade functionality in the debian package is:

� debian/preinst: prepare the system for the upgrade: determine the sys-
tem that is in stand by and format the relevant partitions.

� debian/postinst: extract the archives to the relevant locations, do some
validity tests and provide feedback. If everything checks out, swap the
boot configuration to use the new system. When EFI is used, a one-time
boot could be used: if there is an unexpected problem; a hard reboot will
fall back to the previous system.

Figure 3: Upgrading the system with a fat debian package, where dpkg is used
with a patched debian package to perform the upgrade on the inactive partitions
before rebooting into the new system. This functionality is hidden behind a user
friendly web interface and is executed in parallel to enable bulk upgrades.

In Figure 3, the low level output is shown when an upgrade deb is installed
on the system. This package is not installed in the classical way since it is
running in memory (cf. infra), but the pre and post scripts are used to format
and extract the system.

3.3.4 What about Read/Write Access?

One thing that puts low level embedded systems apart from general purpose
software, is the use of storage: a lot of software that was designed to run and

11

operate on an embedded system does either not use any storage at all, or uses
very specific locations to read and write temporary files. On the other hand,
many general purpose software depend on the use of e.g. pid files, scratch
locations to store information. When the software is well written, these locations
are clearly defined and are in well defined places (e.g. /run/, /tmp/, ...).

In order to keep systems as resilient as possible (and to avoid wear and tear
on e.g. NAND based storage devices) the system is best kept read-only. On
the other hand, running systems need at least some kind of read/write (RW)
access (e.g for storing pid or temporary files) at run-time or some space to store
persistent data.

A straightforward approach would be to isolate these locations and do a bind
mount on a memory location; a way of working that is already in use for many
Linux operating systems for the /tmp/ location. When the system reboots, the
memory is cleared and all the volatile data is gone again.

Unfortunately, this does not rule out one or another subsystem accessing a
different location by accident (or program error).

A solution that is used here is to use an overlay filesystem in memory. These
systems have been around for some time (see. e.g. [6]). Most importantly, these
systems are used for live CDs where the system boots from the CD/USB image,
allows the user to look around, execute some functionality or decide to install
the system.

When the functionality was made popular by aufs, the downside of this is
that it is not part of the main Linux kernel. A successor overlayfs is part
of the kernel and needs no extra steps to use. overlayfs is used on the root

partition [1]. Overlayfs emulates a system that has full read/write access but
these changes are stored in memory and are not persistent; these are not written
to persistent storage. A simple reboot will restore the system to the default
system before changes were made.

Overlayfs is part of the kernel and can easily be configured after installing
the user land tools (see figure 4).

Figure 4: Simple configuration of the system to use overlayfs. After installing
overlayroot, a simple configuration file ensures that a memory layer is put
over the root, shielding it from changes.

By tweaking the installer, we ensure that the root filesystem is mounted
as read-only during boot (do the same with boot of course). Writes are then
captured with overlayfs that keeps track of the changes. After a reboot these
changes are lost and the system is re-initalised to the contents of the stored RO

system.
This approach has many advantages: not only does it allow software to run

obliviously of their non-persistent storage, it also allows to restore the system

12

to the boot/installed state, but most importantly, it allows to experiment with
the system and try out changes before committing these to persistent storage.
This will be tackled in the next section.

3.4 Package Upgrades on Running Images

The previous sections explained what the added value is of upgrading systems
image based (as opposed to package based) and how Debian can be used to
achieve this. It was also explained that all the software was packaged according
to the Debian standards and sent through a builder that keeps track of the
consistency between different architectures (among other things).

Certainly, there are alternative approaches where overlayfs can be used to
merge partial file systems on top of each other, or a system is composed in a
hack and run fashion by copying compiled files into a location before slapping
it in an image. Many of these approaches would advertise the simplicity as an
advantage, while ignoring the myriad of inherent problems (e.g. symbol lookup,
consistency, . . .).

It is at this point where the system as designed above benefits from the
consistent Debian centric packaging and comes full circle.

3.4.1 Non-Persistent Package Install and Upgrade

These systems remain fully functional Debian systems and since all the software
was packaged and stored in a Debian repository (provided by e.g. mini-buildd),
software can be installed with the normal Debian tools. At this point, a dis-
tinction needs to be made between installing software persistently (remains in
between reboots), or software installs that are not persistent.

In the case of a simple non-persistent package install, the system acts as any
normal Debian system does. The overlay file system ensures that the write only
filesystem (mounted on /media/root-ro behaves as if it was read/write and
captures the changes in memory. Installing a package is as simple as adding the
normal deb resource to /etc/apt/sources.list.d and updating the package
descriptions.

As an example tcpdump is installed Figure 5. After apt-get, the package is
available in the root, but it is not present in /media/root-ro. All changes are
contained in memory (/media/root-rw).

This allows to modify a running system to install debugging tools or now
version of the software before committing these. As described before, a simple
reboot will reset the system to the original version.

This way of working has one important limitation: since the changes are
stored in memory; the combined use of the changes must be limited. If these
are large, it will eat memory and will impact the functionality of the system.
If the combined disk space of the changes exceeds the available memory; the
upgrade/install will fail.

13

Figure 5: Simple non-persistent package install: not many changes with respect
to normal Debian way of working

3.4.2 Persistent Package installs and Upgrades

The split between the active system and the protected root filesystem is some-
thing that needs to be taken into account when making persistent upgrades. In
the simplest form, a user can use chroot to change into the /media/root-ro

directory and perform the actions there.

$ sudo mount -o remount,rw /media/root-ro

$ sudo cp app_1.6.1+1+1+g0232ef5_all.deb /media/root-ro/tmp/

$ sudo chroot /media/root-ro

dpkg -i /tmp/app_1.6.1+1+1+g0232ef5_all.deb

rm /tmp/app_1.6.1+1+1+g0232ef5_all.deb

exit

$ sudo mount -o remount,ro /media/root-ro

However, for convenience, putting this in a script that wraps dpkg makes it
a lot easier and hides the copying, mounting and remounting for the user:

$ sudo tlv-dpkg-chroot -i app_1.6.1+1+1+g0232ef5_all.deb

Similarly, the above approach can be adjusted for apt, taking into account
the chroot location. Figure 6 shows the approach where apt has been wrapped in
tlv-apt-chroot. After adding a correct list file in /media/root-ro/etc/apt/sources.list.d4,
tlv-apt-chroot can be used to install a package persistently on the root loca-
tion:

4At the moment, the system does not use DNS when operating in the chroot, so the apt
repository host needs to be resolved to an IP.

14

Figure 6: By wrapping apt in a script that executes it with chroot in the
remounted /media/root-ro location; the system can be upgraded incrementally
and new software can be installed without needing to re-install the full updated
image. When using apt without chroot, changes will get lost after a reboot.

As in the previous example with the volatile installation of a package, tcpdump
is installed; the command is straightforward, the package (with dependencies
if needed) is installed and downloaded. In this example (with overlayfs, the
package (and functionality) is not immediately present in the running system
and will require a reboot to activate the changes on the running system5.

4 Summary

This document described the use of an image based upgrade for Debian systems
at a high level. We started out by describing the advantages of package based
upgrade and why image upgrades can be a valid addition to these. After deciding
that the software should be packaged just as software is packaged in Debian (and
other distributions), the infrastructure that has been put in place was described.

The creation of the images was tackled next. The system was installed
with a modified Debian installer, this installer included the custom software
packages on top of the default ones already present on the original installer. For
aesthetics, some of the artwork was modified. The entire system was wrapped
up with preseed files that determine the partitioning to accommodate for a
symmetric A/B system and answers to common installation questions. The
result is an installer that can be written on a CD or USB stick and that prepares
the controllers for an initial install.

5Other overlay systems can make this change seen immediately (e.g. aufs).

15

In-kernel virtualisation (QEMU) was chosen to generate the upgrade im-
ages by installing the generated iso file in a virtual machine and generating
the archives of the boot and root locations. The advantage of chain testing
the installer to generate the root and boot upgrade artifacts was used over
debootstrap.

Next, these 2 archives were wrapped in a fat debian package which allows to
keep all the scripting and upgrade functionality in the upgrade artifact and not
part of the original system that needs upgrading. This guarantees much more
flexible maintenance. At that point, the image based upgrade of the Debian
system was in place.

Finally, the coupling was made to the standard Debian packaging again: the
system could still add new software from existing repositories (with both apt

and dpkg). When using dpkg and apt; there was little change with a normal
Debian system. The only difference was that the changes were installed in
memory and will not be persistent between reboots.

When using chroot to wrap apt and dpkg, an approach was presented to
allow upgrades and installs of extra software that are persistent in between
upgrades.

This whole process is architecture agnostic. If the company decides to move
to e.g. move to Arm or RISC-V, provided the platform uses something similar
to EFI, the same build/installation process could be used, even in parallel with
the existing i386/amd64 architectures for smoother migrations.

Bibliography

[1] Neil Brown. Overlay Filesystem. url: https://www.kernel.org/doc/
html/latest/filesystems/overlayfs.html. (accessed: 28.07.2023).

[2] Canonical. Enterprise Open Source and Linux — Ubuntu. url: https:
//www.ubuntu.com/. (accessed: 27.07.2023).

[3] Debian. Debian – The Universal Operating System. url: https://www.
debian.org/. (accessed: 27.07.2023).

[4] Debian. Debian 12 ”bookworm” released. url: https://www.debian.
org/News/2023/20230610. (accessed: 27.07.2023).

[5] The Linux Foundation. Decentralized innovation. Built on trust. url:
https://www.linuxfoundation.org. (accessed: 27.07.2023).

[6] Knoppix. Knoppix.net, from zero to Linux in 5 minutes. url: http://
knoppix.net/. (accessed: 28.07.2023).

[7] Miscellaneous. url: http://installiert.net/mini-buildd/. (accessed:
28.07.2023).

[8] Miscellaneous. url: https://www.debian.org/CD/netinst/. (accessed:
28.07.2023).

[9] Miscellaneous. Aptly, Swiss army knife for Debian repository management.
url: https://www.aptly.info/. (accessed: 28.07.2023).

16

https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://www.kernel.org/doc/html/latest/filesystems/overlayfs.html
https://www.ubuntu.com/
https://www.ubuntu.com/
https://www.debian.org/
https://www.debian.org/
https://www.debian.org/News/2023/20230610
https://www.debian.org/News/2023/20230610
https://www.linuxfoundation.org
http://knoppix.net/
http://knoppix.net/
http://installiert.net/mini-buildd/
https://www.debian.org/CD/netinst/
https://www.aptly.info/

[10] Miscellaneous. Buildroot, Making Embedded Linux Easy. url: https://
buildroot.org. (accessed: 27.07.2023).

[11] Miscellaneous. DebianInstaller Preseed. url: https://wiki.debian.
org/DebianInstaller/Preseed. (accessed: 28.07.2023).

[12] Miscellaneous.Debootstrap. url: https://wiki.debian.org/Debootstrap.
(accessed: 28.07.2023).

[13] Miscellaneous. The Yocto Project. It’s not an embedded Linux distribution,
it creates a custom one for you. url: https://www.yoctoproject.org/.
(accessed: 27.07.2023).

[14] Montavista. New to Rocky Linux? Get in touch today! url: https://
www.mvista.com/. (accessed: 27.07.2023).

[15] Redhat. Red Hat - We make open source technologies for the enterprise.
url: https://www.redhat.com/en. (accessed: 27.07.2023).

[16] SuSE. Open Source Solutions for Enterprise Servers & Cloud — SUSE.
url: https://www.suse.com/. (accessed: 27.07.2023).

17

https://buildroot.org
https://buildroot.org
https://wiki.debian.org/DebianInstaller/Preseed
https://wiki.debian.org/DebianInstaller/Preseed
https://wiki.debian.org/Debootstrap
https://www.yoctoproject.org/
https://www.mvista.com/
https://www.mvista.com/
https://www.redhat.com/en
https://www.suse.com/

	Introduction
	Related Work
	Debian Based Setup
	Controller Environment
	Debian as Operating System
	Image Based Upgrades
	Installer
	Upgrade Artifact
	A/B deb Delivery
	What about Read/Write Access?

	Package Upgrades on Running Images
	Non-Persistent Package Install and Upgrade
	Persistent Package installs and Upgrades

	Summary

